Exercise 15

Find an equation for the plane that
(a) is perpendicular to $\mathbf{v}=(1,1,1)$ and passes through $(1,0,0)$.
(b) is perpendicular to $\mathbf{v}=(1,2,3)$ and passes through $(1,1,1)$.
(c) is perpendicular to the line $\mathbf{l}(t)=(5,0,2) t+(3,-1,1)$ and passes through $(5,-1,0)$.
(d) is perpendicular to the line $\mathbf{l}(t)=(-1,-2,3) t+(0,7,1)$ and passes through $(2,4,-1)$.

Solution

A particular plane is specified by a normal vector \mathbf{n} and a point with position vector \mathbf{r}_{0} that lies in it. The equation for this plane comes from the fact that the dot product of \mathbf{n} with any vector in the plane is zero.

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0
$$

$\underline{\text { Part (a) }}$
The equation for the plane is

$$
\begin{gathered}
(1,1,1) \cdot(x-1, y-0, z-0)=0 \\
1(x-1)+1(y-0)+1(z-0)=0 \\
x-1+y+z=0 \\
x+y+z=1 .
\end{gathered}
$$

Part (b)

The equation for the plane is

$$
\begin{gathered}
(1,2,3) \cdot(x-1, y-1, z-1)=0 \\
1(x-1)+2(y-1)+3(z-1)=0 \\
x-1+2 y-2+3 z-3=0 \\
x+2 y+3 z=6 .
\end{gathered}
$$

Part (c)

The direction vector for the line is $(5,0,2)$, so the equation for the plane is

$$
\begin{gathered}
(5,0,2) \cdot(x-5, y+1, z-0)=0 \\
5(x-5)+0(y+1)+2(z-0)=0 \\
5 x-25+2 z=0 \\
5 x+2 z=25 .
\end{gathered}
$$

Part (d)

The direction vector for the line is $(-1,-2,3)$, so the equation for the plane is

$$
\begin{gathered}
(-1,-2,3) \cdot(x-2, y-4, z+1)=0 \\
-1(x-2)-2(y-4)+3(z+1)=0 \\
-x+2-2 y+8+3 z+3=0 \\
-x-2 y+3 z=-13 \\
x+2 y-3 z=13 .
\end{gathered}
$$

